Меню
Разработки
Разработки  /  Математика  /  Подготовка к ЕГЭ  /  7 класс  /  Материал по математике "Разложение на множители суммы и разности кубов"

Материал по математике "Разложение на множители суммы и разности кубов"

Разработка поможет в подготовке учащихся к ЕГЭ.
23.02.2016

Описание разработки

Для разложения на множители суммы кубов нужно использовать одну из формул сокращенного умножения. Она имеет название «сумма кубов»:

a^3 +b^3 = (a+b) *(a^2 – a*b +b^2) ;

Сумма кубов

Мы можем проверить это тождество. Для этого перемножим два многочлена стоящих в правой части тождества (a+b) и (a^2 – a*b +b^2). Воспользуемся правилом умножения многочленов и перемножим каждый член первого многочлена на каждый член второго многочлена. Имеем:

(a+b) *(a^2 – a*b +b^2) =a^3 – a^2*b + a*b^2 + a^2*b – a*b^2 + b^3;

Теперь приводим подобные и получаем:

(a+b) *(a^2 – a*b +b^2) = a^3 + b^3;

Что и требовалось доказать.

Возможно, что вы уже обратили внимание на множитель (a^2 – a*b +b^2). Он похож на трехчлен, который получается при возведении в квадрат выражения (a-b). Отличие лишь в том, что в данном случае, вместо удвоенного произведения стоит просто произведение. Такое выражение a^2 – a*b +b^2 в математике принято называть неполным квадратом разности двух выражений.

Исходя из всего вышесказанного, можем подвести следующий итог:

Сумма кубов любых двух выражений равна произведению суммы этих выражений на неполный квадрат разности этих двух выражений.

Тождество для разности кубов.

Для разности кубов, тоже существует свое тождество.

Материал по математике Разложение на множители суммы и разности кубов

a^3 -b^3 = (a-b) *(a^2 + a*b +b^2) ;

Данное выражение доказывается аналогично предыдущему.

(a-b) *(a^2 + a*b +b^2) = a^3 + a^2*b + a*b^2 - a^2*b – a*b^2 - b^3 = a^3 – b^3;

Трехчлен (a^2 + a*b +b^2) называется в математике неполный квадрат суммы двух выражений.

Учитывая всё вышесказанное, подведем итог:

Разность кубов двух любых выражений равна произведению разности этих выражений на неполный квадрат суммы этих двух выражений.

Примеры

Рассмотрим несколько примеров.

Пример 1.

Разложить многочлен x^3 + 8*y^3 на множители.

x^3 + 8*y^3 = x^3 + (2*y) ^3;

Теперь можем применить формулу куб суммы.

x^3 + (2*y) ^3 = (x + 2*y) *(x^2 – 2*x*y +4*y^2) ;

В итоге имеем: x^3 + 8*y^3 = (x + 2*y) *(x^2 – 2*x*y +4*y^2) ;

Пример 2.

Разложить многочлен x^6 – y^3 на множители.

x^6 – y^3 = (x^2) ^3 – y^3;

А теперь можем воспользоваться тождеством разности кубов двух выражений.

(x^2) ^3 – y^3 = (x^2 – y) *(x^4 + x^2*y +y^2) ;

В итоге имеем: x^6 – y^3 = (x^2 – y) *(x^4 + x^2*y +y^2).

Содержимое разработки

Разложение на множители суммы и разности кубов

 

Для разложения на множители суммы кубов нужно использовать одну из формул сокращенного умножения. Она имеет название «сумма кубов»:
a^3 +b^3 = (a+b)*(a^2 – a*b +b^2);

Сумма кубов

Мы можем проверить это тождество. Для этого перемножим два многочлена стоящих в правой части тождества (a+b) и (a^2 – a*b +b^2). Воспользуемся правилом умножения многочленов и перемножим каждый член первого многочлена на каждый член второго многочлена. Имеем:

(a+b)*(a^2 – a*b +b^2) =a^3 – a^2*b + a*b^2 + a^2*b – a*b^2 + b^3;

Теперь приводим подобные и получаем:

(a+b)*(a^2 – a*b +b^2) = a^3 + b^3;

Что и требовалось доказать.

Возможно, что вы уже обратили внимание на множитель (a^2 – a*b +b^2). Он похож на трехчлен, который получается при возведении в квадрат выражения (a-b). Отличие лишь в том, что в данном случае, вместо удвоенного произведения стоит просто произведение. Такое выражение a^2 – a*b +b^2 в математике принято называть неполным квадратом разности двух выражений.

Исходя из всего вышесказанного, можем подвести следующий итог:
Сумма кубов любых двух выражений равна произведению суммы этих выражений на неполный квадрат разности этих двух выражений.

Тождество для разности кубов

Для разности кубов, тоже существует свое тождество.

a^3 -b^3 = (a-b)*(a^2 + a*b +b^2);

Данное выражение доказывается аналогично предыдущему.

(a-b)*(a^2 + a*b +b^2) = a^3 + a^2*b + a*b^2 - a^2*b – a*b^2 - b^3 = a^3 – b^3;

Трехчлен (a^2 + a*b +b^2) называется в математике неполный квадрат суммы двух выражений.
Учитывая всё вышесказанное, подведем итог:

Разность кубов двух любых выражений равна произведению разности этих выражений на неполный квадрат суммы этих двух выражений.

Примеры

Рассмотрим несколько примеров.

Пример 1.

Разложить многочлен x^3 + 8*y^3 на множители.

x^3 + 8*y^3 = x^3 + (2*y)^3;

Теперь можем применить формулу куб суммы.

x^3 + (2*y)^3 = (x + 2*y)*(x^2 – 2*x*y +4*y^2);

В итоге имеем: x^3 + 8*y^3 = (x + 2*y)*(x^2 – 2*x*y +4*y^2);

Пример 2.

Разложить многочлен x^6 – y^3 на множители.

x^6 – y^3 = (x^2)^3 – y^3;

А теперь можем воспользоваться тождеством разности кубов двух выражений.

(x^2)^3 – y^3 = (x^2 – y)*(x^4 + x^2*y +y^2);

В итоге имеем: x^6 – y^3 = (x^2 – y)*(x^4 + x^2*y +y^2);


-75%
Курсы повышения квалификации

Современные педагогические технологии в образовательном процессе

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
1000 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Материал по математике "Разложение на множители суммы и разности кубов" (12.86 КB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт